NOCIONES GENERALES SOBRE CLAVOS INTRAMEDULARES, TORNILLOS E INTERLOCKING

MARÍA CLAUDIA SAVAN VETERINARIA UBA

CÁTEDRA CIRUGÍA

CLAVOS INTRAMEDULARES

- Forma más común de fijación interna
- En combinación con:
 - Alambres de cerclaje
 - Bandas de tensión
 - Fijadores externos

VENTAJAS

Menos costosos

Equipamiento fácil de obtener

Menor tiempo de colocación

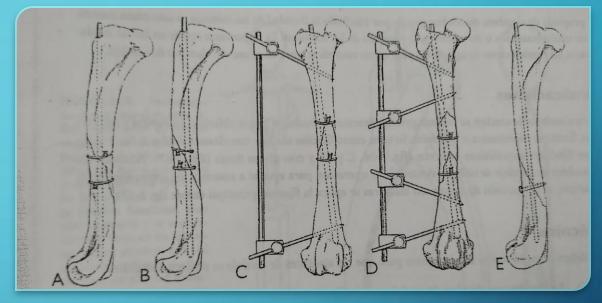
Más fáciles de retirar

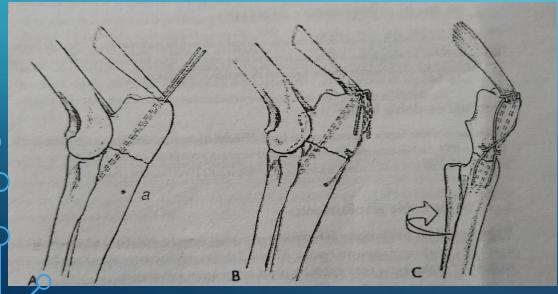
Mínimo efecto sobre la circulación

DESVENTAJAS

No tan estables en fragmentos óseos pequeños

No mantienen la longitud del hueso


No comparten carga con el hueso


Puede diseminar infección en fracturas abiertas

FACTORES BIOMECÁNICOS

- Fuerzas que actúan en una fractura de huesos largos:
 Flexión, Compresión y Rotación
- · Acero inoxidable de clavos IM muy rígido para soportar fuerzas de flexión
- Fracturas transversales tienden a solaparse, fracturas en espiral o multifragmentarias requieren apoyo auxiliar para detener el colapso axial
- Fuerzas de distracción en áreas de adhesión músculo-tendinosa (tuberosidad del olécranon y cálcanea)
- Migración del clavo en distal indica movimiento por insuficiente estabilidad (resorción ósea)

FIJACIÓN AUXILIAR

TIPOS DE CLAVOS

Clavos de Steinmann

Alambres de Kirschner

Clavos de Rush

Clavos de Küntscher

Clavo cerrojado (interlocking)

CLAVO DE STEINMANN

- Son circulares en sección transversal.
- Lisos o con vástagos de perfil de rosca negativo (total o parcial)
- Diámetro de 1,5 a 6,5 mm
- Punta de los clavos diseñadas para cortar hueso mientras se inserta con movimiento de perforación

CLAVOS DE STEINMANN

Punta Trócar o de punción

Punta diamante o cincel

INDICACIONES DE USO

FRACTURAS ESTABLES QUE NO TIENEN UNA TENDENCIA HACIA EL ACORTAMIENTO O ROTACIÓN AXIAL

ANIMALES INMADUROS, MENORES A 4 MESES DE EDAD

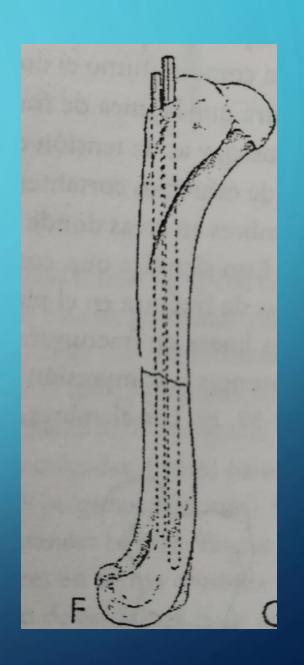
EN COMBINACIÓN CON FIJACIÓN AUXILIAR

MÉTODOS DE APLICACIÓN

CON MANGO DE JACOBS MOVIMIENTO ROTATORIO

TALADROS MECÁNICOS

PUEDE HABER NECROSIS TÉRMICA
DEL HUESO


DIÁMETRO DEL CLAVO

- Uno o más clavos dan mayor rigidez a la construcción hueso clavo
- Felino: hueso recto, llenar la cavidad permite la reducción anatómica, pero puede interferir con el restablecimiento del flujo sanguíneo medular
- · Caninos: huesos curvados, llenar la cavidad impedirá la reducción anatómica
- En fracturas medio-diafisiarias llenar en un 60-75 % la cavidad medular en el punto más angosto

APILAMIENTO DE CLAVOS

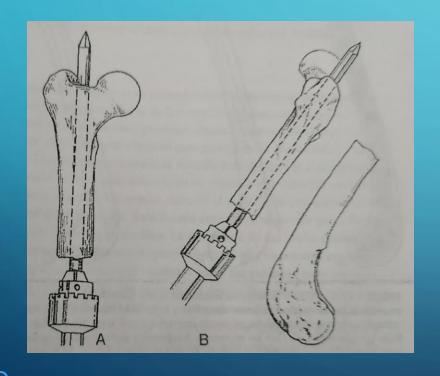
- Uso de varios clavos para llenar la cavidad
- Sólo en húmero y fémur
- Ventajas: Mejor estabilidad rotatoria y más puntos de contacto óseo
- **Desventajas**: mayor tendencia de los clavos a migrar

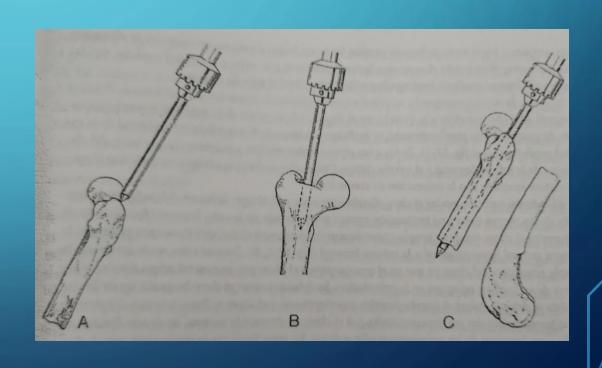
Dificultad de cortar los clavos en el punto de entrada para prevenir la irritación del tejido blando

ASENTAMIENTO DEL CLAVO

- Siempre mirar la fractura mientras se introduce el clavo
- Si se observa distracción es probable que el clavo esté enganchando la corteza distal y separando los huesos
- Si el clavo se introduce distalmente en la articulación se debe cambiar la dirección del mismo
- A medida que se alcanza la colocación final del clavo asegurarse que no haya crepitación en la articulación. Utilizar otro clavo de longitud similar.

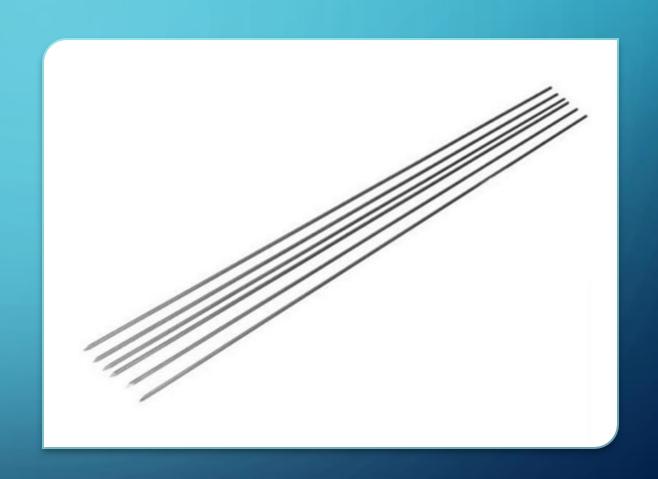
CORTE DEL CLAVO


- Alicates
- Objetivo: cortar el clavo lo más corto posible (- 5 mm)
 por sobre el hueso



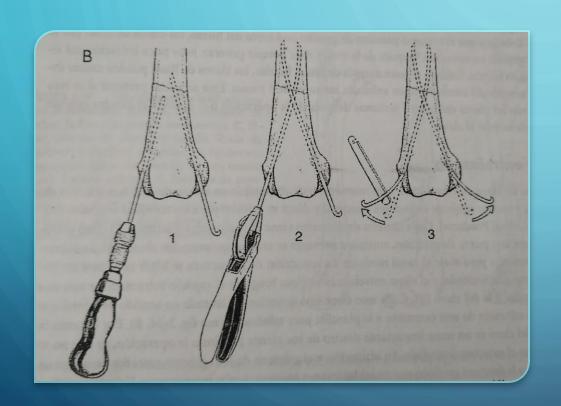
UBICACIÓN DEL CLAVO EN LOS HUESOS LARGOS

MANERA RETRÓGRADA


MANERA NORMÓGRADA


ALAMBRES DE KIRSCHNER

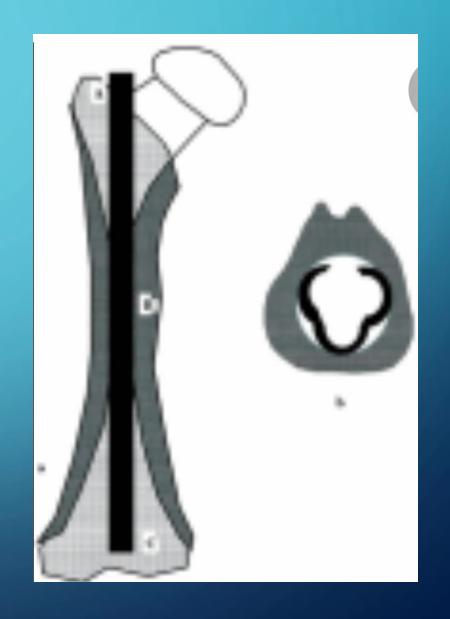
- Similares a los clavos de Steinmann, pero de diámetro más pequeño
- Diámetro de 0,8 a 1,5 mm
- Se prefiere punta trocar



CLAVOS DE RUSH

- Dinámicos: ejercen fuerzas de compresión continua en 2 o 3 puntos del hueso
- Se introducen en ángulo de 20° respecto al eje axial
- Punta biselada, no cortante
- Extremo opuesto forma de gancho

TÉCNICA DE COLOCACIÓN

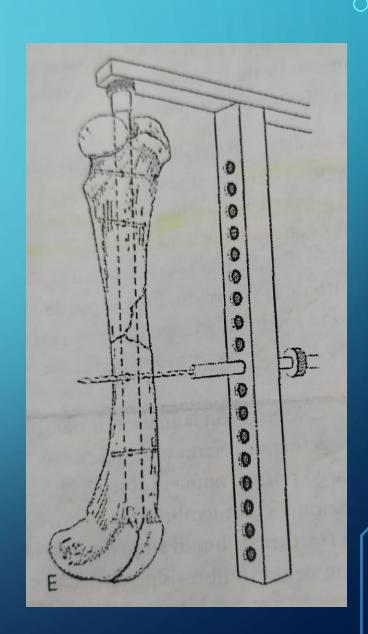


- Se inserta en un ángulo de 20° en relación con el eje largo del hueso y se fuerza la flexión
- Se debe realizar un orificio guía
- Cuando se percibe resistencia en el momento que el clavo toma contacto con la corteza opuesta, se lo empuja con martillo

CLAVO DE KÜNTSCHER

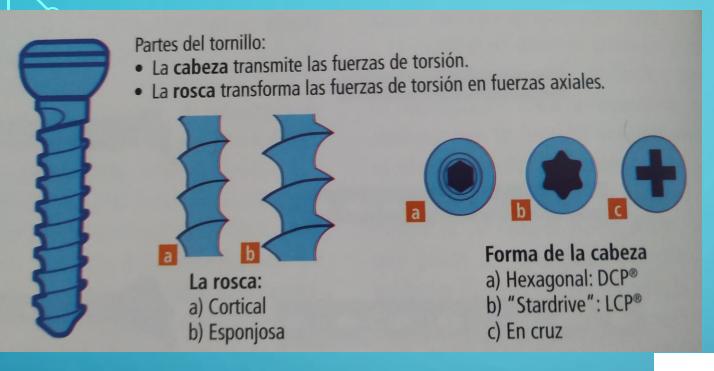
UNA DE LAS PRIMERAS FORMAS DE FIJACIÓN INTRAMEDULAR NO ES MUY ÚTIL EN CANINOS Y FELINOS

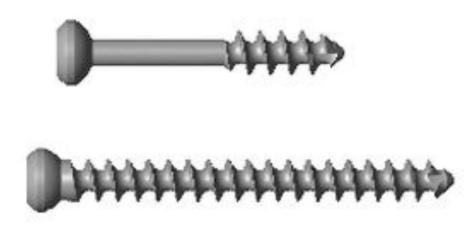
INTERLOCKING


- Clavo IM asegurado en la posición por medio de tornillos atravesados que aseguran el hueso al clavo para proveer estabilidad torsional y axial
- Previene el colapso de frácturas conminutas durante el soporte de peso, inestabilidad rotatoria y migración del clavo
- Frácturas de fémur, húmero y tibia
- Diámetros de 4 a 8 mm. Diferentes longitudes según el diámetro

TÉCNICA DE COLOCACIÓN

- Se puede insertar mediante un abordaje quirúrgico limitado

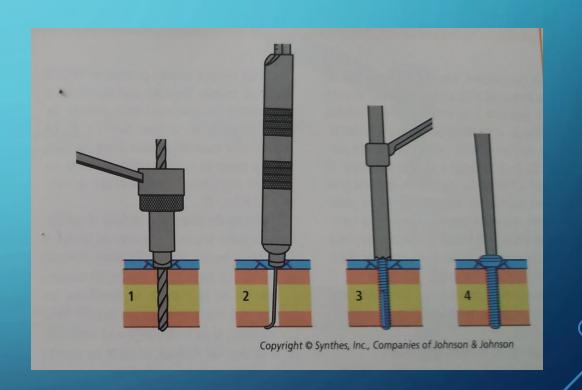

- Tiene una punta de punción, aunque el canal medular puede abrirse con clavos de Steinmann de menor diámetro
- Tiene una articulación labrada en proximal que permite la adhesión de una extensión a una plantilla para taladrar
- Se utilizan inserciones y manguitos a través de la plantilla para colocar los tornillos de cierre en los agujeros de los clavos



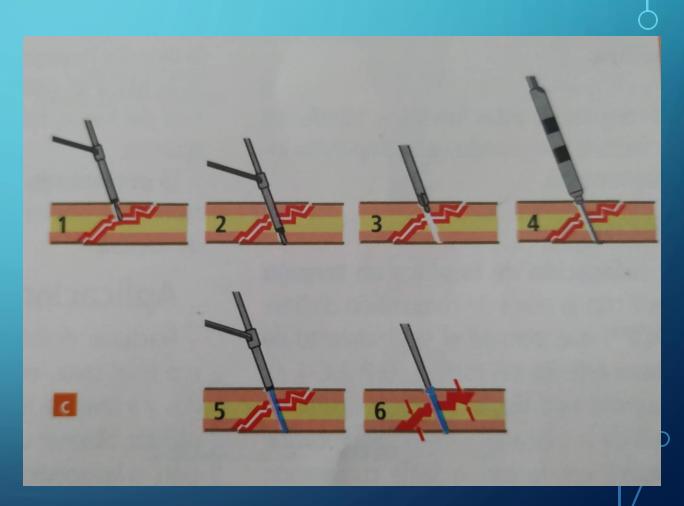
TORNILLOS ÓSEOS

- Tornillo cortical
- Tornillo de esponjosa
- Tornillos bloqueados
- Diferentes medidas (diámetro y longitud)
- Función de tracción o posicionamiento neutro

TORNILLOS BLOQUEADOS



INSTRUMENTAL


TÉCNICA DE ATORNILLADO: PASOS

- Realizar el orificio
- Medir la longitud
- Hacer la rosca
- Colocar el tornillo

EN CASO DE COLOCAR UN TORNILLO DE TRACCIÓN SE DEBE REALIZAR UN ORIFICIO DE DESLIZAMIENTO

- Realizar el orificio de deslizamiento
- Colocar la guía reductora
- Realizar el orificio de fijación
- Medir
- Hacer la rosca
- Colocar el tornillo

PREGUNTAS???

BIBLIOGRAFÍA

- Manual de Ortopedia. Reparación de fracturas en pequeños animales 4° edición. Donald L. Piermattei. Editorial Intermédica
- Atlas de casos clínicos: Fracturas en el perro y el gato. Jaques Drapé, Josep de la Fuente. Editorial Intermédica
- Imágenes sitios web
- Imágenes cortesía de colegas

GRACIAS!!!

SAVAN.CLAU@GMAIL.COM